Emerging micropollutant removal from wastewater using membrane technologies

Teresa de la Torre ACCIONA Agua

Jornadas ESAMUR 2016. 9-10 Noviembre, Murcia

Index

- 1. Introduction
- 2. Technologies
- 3. Results Trace organics removal
 - MBR
 - MBBR
 - IFAS-MBR
 - Reverse osmosis
 - Flux-enhancer addition
- 4. Conclusions

Introduction TrOCs removal

- Legislation still pending → Which removal do we want to achieve?
- LCA studies reveal that a higher removal does not mean lower environmental impact: ecotoxicity is diminished but higher energy consumption
- We should provide an adequate removal depending on receiving water
- Range of technologies available with different removal rates:
 - High removal:
 - AC \rightarrow regeneration cost, negative LCA
 - Reverse osmosis, AOP \rightarrow high energy costs
 - Low removal:

- Simple technologies can be adequate in some cases
- Any improvement in the WWTP will be benefitial for the AWTP (advanced water treatment plant)

Introduction: Technologies

Broad spectrum of technologies with different removal rates:

- MBR
- MBMBR
- IFAS-MBR
- AS with cationic polymer addition
- Reverse osmosis

Introduction: Biofilm-MBR

Activated sludge systems

• MBBR = Moving bed bioreactor

MBBR

• IFAS =Integrated Fixed-film activated sludge

Introduction: Biofilm-MBR

• MBR= Membrane bioreactor

- MBMBR = Moving bed membrane bioreactor
 - $\rightarrow \begin{array}{c} \mathsf{MBMBR} \\ \rightarrow \\ AE \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \end{array} \rightarrow \begin{array}{c} \mathsf{AE} \\ \Rightarrow \\ \downarrow \end{array} \right)$

• IFAS-MBR =Integrated Fixed-film membrane bioreactor

Carriers

Introduction: Biofilm-MBR

- Different conditions
- Different biology
- High sludge residence time (SRT)
- \rightarrow Improved trace organics removal?

Pilot plant

MBR/RO reclamation pilot plant in Almuñécar (South of Spain)

- Urban wastewater (WWTP Almuñécar)
- High and stable temperature
- 29 months of operation

- **MBR** 5 m³/h treated
- Composite samples, 3/week

RO 800 L/h treated

Pilot plant – Operational data

l+D+i

	SRT	MLSS aerobic tank	MLSS membrane tank	HRT	т	Total COD	COD filtered
	d	g/L	g/L	h	°C	mg/L	mg/L
IFAS-MBR 10	10	2.5	7.3	13	18-27	3138	168
IFAS-MBR 20	20	5.3	8.0	13	16-20	1022	56
MBMBR	-	0.3	9.7	6	13-23	1147	66
MBR	20	7.4	10.6	13	12-30	1233	176

MBR		Supplier	Pore size	RO	
Туре			μm	Membrane	Material
Hollow (HF)	fiber	Koch Membranes	0.05	TRISEP 4040-X201-TSA	Aromatic Polyamide-urea

Trace organics

Method: HPLC with MS

Studied Pharmaceutical Active Compounds (PhACs)

Antibiotics	Sulfamethoxazole Trimethoprim	Lipid regulators	Clofibric acid Gemfibrozil	
		β-blockers	Propanolol	
		Anticonvulsant	Carbamazepine	
	Acetaminophen Diclofenac Ibuprofen Naproxen	Stimulant	Caffeine	
Anti-inflamatory drugs	Salycilic acid Ketoprofen	Estrogens	17a-ethinylestradiol 17b-estradiol Estriol Estrone	

Trace organics

Studied PAHs, DEHP, LAS y Nonylphenols

Method PAHs: HPLC with simultaneous UV detection and fluorescence Method DEHP, LAS and NPs: HPLC and MS

Polycyclic aromatic hydrocarbons (PAHs)	Naphthalene Phenanthrene Fluoranthene Pyrene Anthracene Benz[a]anthracene Chrysene Benz[b]fluoranthene Benzo[k]fluoranthene Benz[a]pyrene Dibenz[ah]anthracene Benz [ghi]perylene	Di-(2-ethylhexyl) phalate	DEHP
		Linear alkylbenzene sulfonates (LAS)	C10, C11, C12, C13
		Nonylphenols	Nonylphenol (NP) Nonylphenols mono and diethoxylate (NP1EO and NP2EO)

Influent concentrations: PhACs

High concentrations of antiinflamatory drugs

All studied compounds detected except estrone

[+D+i

Influent concentrations: LAS, NP, DEHP and PAH

l+D+i

De la Torre et al., Water Sci Tech 71 (5) (2015), 761-768

Cationic polymer addition

- BRAINYMEM Project: evaluation of "flux-enhancers": cationic polymers added to the activated sludge to improve filterability -> associated MP removal?
- References for treated wastewater (Matamoros and Salvadó, 2013) and influent wastewater (Carballa et al., 2005; Zhou, 2011) indicate poor removal rates, very variable depending on the compound (0-70%)

Cationic polymer addition

- Jar test with aerated sludge samples and added micropollutants
- Cationic polymers added to activated sludge: Nalco (MPE50) and BASF (Magnafloc LT35)
- 20-60% increased removal of hormones for MPE50 for the highest concentration

Conclusions

- IFAS-MBR showed the highest removal rates (72%) and removed hormones below the detection limit
- Operating conditions are highly relevant (SRT, MLSS, HRT)
- MBMBR showed the worst performance (low HRT and biomass conc.)
- All compounds effectively removed except for NPs and DEHP \rightarrow potential problem with the WFD
- For higher removal rates, RO is necessary (but also advanced oxidation and active carbon)
- Addition of flocculants improved hormone removal up to 60%

[+D+i

Acknowledgement

Thanks to:

- Corporación Tecnológica de Andalucía for co-financing.
- Aguas y Servicios of Costa Tropical of Granada for their collaboration.
- The LIFE Programme for funding the BRAINYMEM project
- My colleagues from ACCIONA Agua
 The work of:
 - Juan Luis Santos
 - Miguel Ángel Gómez
 - Irene Aparicio
 - Jorge Ignacio Pérez
 - Silvia Ruiz
 - María del Mar González
 - Jose Luis González

Thank you for your attention

Questions?

teresa.torre.garcia@acciona.com

